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Abstract. A nonconvex generalized semi-infinite programming problem is considered, involving
parametric max-functions in both the objective and the constraints. For a fixed vector of parameters,
the values of these parametric max-functions are given as optimal values of convex quadratic pro-
gramming problems. Assuming that for each parameter the parametric quadratic problems satisfy the
strong duality relation, conditions are described ensuring the uniform boundedness of the optimal
sets of the dual problems w.r.t. the parameter. Finally a branch-and-bound approach is suggested
transforming the problem of finding an approximate global minimum of the original nonconvex
optimization problem into the solution of a finite number of convex problems.
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1. Introduction

For an introduction to semi-infite programming problems we refer to the exten-
sive survey in Hettich and Kortanek (1993). Concerning the so cghedralized
semi-infinite programmin@&SIP), that is a problem where the index set of the con-
straints depends on the decision variables of the problem, in the recent past there
has been a growing number of papers. In particular, we refer to Hettich et al. (1995),
Weber (1996), and Jongen et al. (1998) for the generic structure of the solution set
of GSIP and to Hettich and Still (1995) and Kaplan and Tichatschke (1996) for
optimality conditions and special properties of GSIP. In Levitin and Tichatschke
(1998) a smooting procedure for generalized max-functions is developed, which
can be used in the framework of GSIP to work with the differential calculus for
these non-smooth functions.

However, there are only a few papers dealing with some basic ideas for nu-
merical methods for GSIP (see Graettinger and Krogh, 1988; Hettich and Still,
1991; Kaplan and Tichatschke, 1997). In the latter paper a special class of ill-posed
GSIP, arising in robotics or time minimal control problems, is treated by means of
a proximal point technique.
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Here the following optimization problem is considered:

co(x) +mpo(x) > min, x € Q, (1.1
with

O={xeX: ¢ +mx) <03 el)}, (1.2)
and, fori e I' := {0} U I,

m;(x) = max{3(G;zi, z;) + (i + Hix,z;) : 2 € Di(x)}, (1.3)

Di(x) :={z; € Z; :(pis, zi) + qis(x) <0 (s € Si1),
(pis> 2i) +qis(x) =0 (s € §;2)}. (1.4)

In this description we suppose:
X is a convex closed set in the Euclidean spdce
I is afinite set of indices;
for eachi € I’ the functionsc; are continuous itX and convex oriX;
G, : Z; — Z; are symmetric, negative semi-definite linear operators in the
Euclidean spaces;;
teZ;andp;, € Z; (s € S; := S;1 U S;,) are vectors;
H; : X — Z; are arbitrary linear operators;
S;1 ands;, are finite sets of indices;
the functions—g;, (s € S;1) are convex or% and continuous o, and

qis (s € S;2) are affine orX.
First, we assume that for eaghe X the setD; (x) # ¢ for arbitraryi € I'. Below,
some conditions are given ensuring this property. Obviously, if in Problem (1.1),
(1.2) O # ¢ and there exists a pointe Q for which co(x) + mo(x) < +00, then
mi(x) < +ooViel.

In system analysis, in particular, in mathematical economics (Germeyer, 1976)
and robotics (Graettinger and Krogh, 1988), often optimization models are consid-
ered with entries, depending on a vector of parametefise I’). For example, an
objective functiong and functionsf;, describing inequality constraints, may have
the form

F(x) == co(x) + ho(x, zo), fi(x) i==ci(x) + hi(x, zi) (0 € I).

Each of the parametegs belongs to a corresponding get, which may depend on
the sought solution: of the initial problem, i.eD; = D;(x), whereD;(x) is, for
instance, given as in (1.4).

Usually it is unknown which vectat; € D;(x) has to be chosen, i.e., we deal
with an optimization model under uncertainty. If there is no information about
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such a possible choice, it is natural to use the ‘principle of guaranteed results’ (cf.
Germeyer, 1976a, b) or other conservative strategies (cf. Tichatschke et al., 1989),
ensuring the validity of the model also in the worst situation. That means a solution
x € X is sought which satisfies the inequaligyf(x) + 4;(x,z;) < 0@ € I)

for arbitrary z; € D;(x) and minimizes the objective function under the worst

z0 € Do(x). In this case we obtain the following problem:

co(x) + max{ho(x, zg) : zo € Do(x)} — min

st. ci(x)+max{h;(x,z;):z; € Dix)} <0G el),x e X.

This problem is equivalent to Problem (1.1), (1.2) if we suppose that forall’
the functions:; are of the form

hi(x,z) = 3(Gizi, i) + (& + Hix, z;),

where the set®; (x) are given via (1.4).
In this framework, for each € I’, a family of parametric, convex, quadratic
programming problems (PQP) with parametes X can be considered:

%(GiZi, zi) + (& + Hix, z;) > max  z; € D;(x). (1.5)

We call the functionn;(x), giving via (1.3) for fixedx € X the optimal value of
Problem (1.5)generalized max-function of type PQFrom the theory of convex
programming it follows that, in casB;(x) # ¥ andm;(x) > —oo, the duality
relation is always true. In general, due to the dependend2 oh x, the optimal
value functiorvi; (x) of (1.5) is nonconvex. Hence, (1.1)-(1.4) is a nonconvex op-
timization problem and we call gjeneralized semi-infinite programming problem
of the type PQPbecause it can be rewritten as a problem in the sageR®:

v — min

x e X,ve Rl,

co(x) + 3(Gozo, z0) + (€0 + Hox,z0) —v < 0 Vzo € Do(x), (1.6)
¢i(x) + 5(Gizi, zi) + (€ + Hix, z;) < 0 Vz; € Di(x) (i € I).

The main idea of the paper is that under suitable assumptions, and by using the dual
problems of the arising quadratic subproblems (1.5), a reduced nonconvex problem
with a finite number of variables and constraints can be obtained (cf. (4.1)—(4.5)).
In the latter problem, the convex envelopes of the nonconvex functions in the ob-
jective and constraints can be easily computed. A branch-and-bound approach is
proposed for solving the latter problem. As a consequence, an approximate solution
of the original problem can be obtained by solving finitely many convex problems.
We do not strive to describe in detail the resulting branch-and-bound algorithm
for the transformed problems, because it does not lead to fundamental new theoreti-
cal or practical contributions. Rather, the basic message in this paper consists in the
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connection between some special generalized semi-infinite programming problems
and the possibility of their reduction to a sequence of convex finite dimensional
problems. To what extent this approach works efficiently in practice, is still an
open guestion and needs computational experiences.

In Section 2 basic properties of Problem (1.5) and assumptions are given under
which Problem (1.1)—(1.4) is investigated. An explicit form of the dual function for
Problem (1.5) is described in Section 3 and some constants are calculated, ensuring
that for alli € I’ andx € Q the optimal sets of the dual problems to Problem
(1.5) are contained in certain parallelepipeds. In Section 4 the equivalence between
Problem (1.1)—(1.4) and a reduced problem (4.1)—(4.5) is proved. Finally, a branch-
and-bound technique is sketched briefly to find an approximate solution of Problem
(4.1)—(4.5) by means of the solutions of a finite number of convex problems (see
(4.9)).

2. Basic notations and assumptions

Lety; = {yis}ses, € Yi = R¥ I be the Lagrange multiplier vector for Problem (1.5)
and

Y, = R\f{ll % RiSi2l (2.2)
Denote
I (x, zi, yi) i= %(Gizi’ zi) + <Zi + Hix — Zyispis’ Zi> - Z)’is%‘s(x),

ses; SES;

2.2)

@i(x,y;) :=sUpIl;(x, z;, yi) : 2i € Z;}, (2.3)

the Lagrange function and dual function for Problem (1.5), respectively. It is obvi-
ous that

@i(x, yi) = mi(x, yi) — Zyl‘s%’s(x), (2.4)

seS;

with

mi(x, yi) == sup %(GiZi, zi) + (¢ + Hix — Z)’ispis, Zi) 17 €Z;
SES[

(2.5)

The functionr; (x, y) is convex w.r.t. the paifx, y;}, because it is the supremum
w.r.t. z; € Z; of a parametric affine function ifx, y;}. From (2.4) it follows that
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for eachi € I’ the dual to Problem (1.5) has the form

(6, i) = Y Yisdis(x) = Min, y; € Y. (2.6)
SES,‘
Let
Yr(x) == Argmin { 7 (x, y) = Y yisdis(x) 1 yi € Y 2.7)

seS;

be the optimal set of Problem (2.6).

Neglecting the fact that it was necessary to describe some of the assumptions in
the introduction in order to understand Problem (1.1)—(1.4), we formulate now the
complete set of assumptions used in this investigation.

ASSUMPTION A.X is a convex set itiX; for eachi € I’ the continuous functions
¢; and—g;, are convex ori for s € S;; andg; is affine inX for s € S;».

ASSUMPTION B. For each € I’ there exist numbers > 0, ¢; > 0 and a vector
Z; € Z; such that
(i) foreveryy® = {y;. s € Siz} € R52! the linear system

(DPis» &i) = yis Vs € Sip

has a solutiort; = & (y®) with [|&]| < 6;max,cs,|yis| (it is obvious that
this condition is equivalent to the linear independence of the veptors €
Si2);
(||) (p,‘S, 2,) g é’,’ <0 Vs € S,‘]_, (Pis, Z,) =0 Vs S S,’2.
From the convex analysis it is well known (see, for instance, Rockafellar, 1970)
that under Assumption B the sBt(x) is nonempty for arbitrary € I’ andx € X.

PROPOSITION 2.1.Suppose that Assumption B is fulfilled, then for eaehl’
it holds

Zyispis 2 K ngXD&J Yy € Y, (2.8)

seS;

with & = & [66; + 1|1+ Gimax,es, | pic D]~

Proof.Lety; = {y™", v}, with y¥ = {yis. s € Si} = 0, 32 = {yis, s € Sin)
andmax,cs, |yis| = 1. Due to Assumption B(i) there exists a vectpr= & (y?)
such that

(pis, &) = sign yis Vs € Sz, &1l < Oimaxses,|yis| < 6;.
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Denote

yi =6 [1+ e-numses,1||p,»s||]*l

z,(y,> = EOP) = D& -

~ -1
zZill™.
Due to

lzi(y)ll = 1, Vi = & — viOimaxses, | pisll,
and Z |)’zs maXxses; |y1s| =1

SES;
we obtain
[ Z YisPisll =2 <Z Yis Pis» Zi (yi)>
seS; seS;

= In&O) = Z17 | D i (pivs & 61)

seSi1

+ Z yis<piS7 _zt> + Z yisyiSign Yis

sESi1 s€Si2

> (b + 1207 (@ — vibimaxges, | pisl) Z Yis t Vi Z |yis|

s€Si1 sESi2
= @b + 1ZID v Y yisl = (i + 121D .
SE&
Hence, ifmax;es, |yis| = 1, then(| 3 ¢ vis pisll > (vifi + 1Z: )7 = «;. O

ASSUMPTION C. There exists a vectére X such that
mo(X) < +00, ¢;(x)+m;(X) <0Viel

and the set
Qi :={x € Q: colx) +mo(x) < co(X) + mo(¥)}

is bounded.

Condition C guarantees that the $ete Q : co(x) + mg(x) < 400} IS non-
empty, that the optimal value of Problem (1.1)—(1.4) is finite, and that the optimal
solution of Problem (1.1)—(1.4) belongs to the &gt It is obvious that

m;(x) < +oo Vi € I',Vx € Q;.
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From the theory of convex quadratic programming (cf., for instance, Kinzi and
Krelle, 1962; Pshenichny, 1980) it holds: If in Problem (13)x) # @ and the
optimal value is finite, then the strong dualtiy relation is valid, i.e.,

m;(x) 1= sup {%(GiZi,Zi> + (€ + HiX,Zi)} = |r€1]; @i (x, yi). (2.9)
Yi i

zieDji(x)

Moreover, the optimal setd} (x) and¥*(x) of the Problems (1.5) and (2.6) are
nonempty, respectively. Therefore, from the Assumptions B and C it follows that
for eachi € I’ andx € Q; the duality relation (2.9) holds, and tha&f (x) # ¢
andY}(x) # 0.

ASSUMPTION D. For each € I’ there are known numbers, M; > 0, v,,, and
v;s (s € §;) such that for arbitrarg € X the inequalities

C,’(X) 2 ﬂiv
1¢; + Hix|| < M;, (2.10)
Vi < —qis(x) < Ui (5 € 5))

are true.

Assumption D can be replaced by a weaker, but more complicated verificable
one, namely that the inequalities (2.10) are satisfied only for eachD ;.
Concerning the determination of the constants arising in (2.10) we emphasize:
e Conditionc;(x) > u; Vx € X is always true, if the seX is bounded or
ci(x) — +4ooforx e X, |x|| — oo; to calculate the numberng, it is
sufficient to find or to underestimate the valieg{c; (x) : x € X}.

e Condition ||¢; + H;x|| < M; Vx € X holds, if the setX is bounded or
IH:x|| = a;||x]| Vx € X (a; > 0),i.e.,{x : Hx = 0} = {Ox}; to determine
the numbersVf; it is sufficient to find or to overestimate:p{||¢; + H;x|| :
x € X}. This supremum can be easily calculated if the Xeis bounded,
namely

sup{llt; + Hix|| : x € X} < 4]l + [ Hillsupxex || x]|-

Note that, in general, the problemp{||¢; + H;x| : x € X} consists of the
maximization of a convex function on a convex set. This is one of the well
studied problems in global optimization. It is well-known Xf is a convex
polyhedron, that this maximum is equal to the maximum of the values of the
objective function in the vertices of.

e Finally, it should be noted that far € S;1, the numbers. are minorants of

—IS

the optimal values of the following convex optimization problems

—qis(x) > min, x € X, (2.11)
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andw;, are majorants of the optimal values of the problems
—gis(x) > max x e X. (2.12)

In the latter problem a convex function on a convex set has to be maximized.
For the solution of this problem we refer to several numerical methods in
Horst and Tuy (1996).

Analogously, fors € S;2, the numberg,, andv;, are minorants and ma-
jorants, respectively, of the optimal values of the convex Problems (2.11) and
(2.12) (observe that far € S;, the functionsg;; are supposed to be affine).

If X is a convex polyhedron, then obviously we deal in (2.12) with linear
programming problems.

3. Uniform embedding of the optimal sets¥*(x) into polyhedrons

For givenN; > 0 (i € I') we consider the following polyhedrons
Pi(N) :={yi€Y;i:0<ys <N; (s €81, lyis| <N (s €82)}. (3.1)

In the sequel we describe a procedure determining the conafam$3.1) such
that

Y*(x) C P(N;) Viel, Vxe Q.

Letf; = {z; € Z; : G;z; = 0} be the kernel of the operatdt;, ?R} be the orthog-
onal complement to the subsp&gg then

N =z} €Z; : 2} = G]z; for somez; € Z;}, (3.2)

with G| the conjugate operator ;. DenoteG, the restriction of the operata@r;
on the subspacd;". Then we obtain:

if Zi € Z,’, Zi :zi +2,’, Wlth zi S ERZ', 21' S ER,J‘ = Gizi = GiZi.

In this way we deal with a non-degenerate operaigri.e. there exists the inverse
(GH™L. quing intp account thaf;; is assumed to be negative semi-definite, the
operatorsG; and(G;)~! are negative definite, i.e., for somg> 0 it holds

(Gigi, 20) < —hillZl® V2 € R (3.3)
Now, we come back to our problem. Foredch I, x € X, y; € Y; denote

Zi(x,y)) =4; + Hix — Z)’ispis- (3.4)

SES,‘

Obviously,z; is an affine operator frot x Y, into Z;.
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PROPOSITION 3.1.For eachi € I',)x € X,y € ¥, the functions;(x, y;),
defined by (2.5), is equal to

-1 (G)_lz(x vi), Zie, yi) ) if Zi(x, yi) € Rt
JT,'(X,y,‘)= 2 1 1 s J1Jy Xl s J1 1 » Jl YMO

+o00 otherwise

Proof. Let zi(x,y) & R, ie. dz; € N,z # 0 such that(Z,-(x, ¥i), 2i) #

i

0. Without loss of generality letz; (x, y;), z;) > 0, otherwise—z; € R; can be
chosen. Due t¢G;z;, z;) = 0 the function

%(Gi(tzi)’ tzi) +(Zi(x, i), tzi) = t{zi(x, yi), i) — +oo  fort — +o0.

Hencer;(x, y;) = +o0.
Now, letz; (x, y;) € %}, For arbitraryz; € Z; denotez; the orthogonal projec-
tion of z; on the subspacd;. Then we get

(Gizi, zi) = <Gi2i72i> and (zZ;(x, yi), zi) = (Zi(x, ¥i), Zi)
because of; — z; € N;.

Hence, ifz; (x, y;) € 9+, one can conclude that

1

sup {3(Gizi, 20) + Gitxo v 2)} = sup {3(Giin 20 + G,y 200

ueli sent
(AN _
= —§<<G,»> Zi(x,yi),zi(x,yi)>,

because the functiogl(é,éi, Z:)+ (Z(x, yi), Z;) attains its maximum w.r.§; € %
in the point

~\—1
== (Gi) zitew. (3.5)
O
COROLLARY 3.1. Assume that the matri%; is negative definite. Then
7%, i) = = 3Gz, i), 20, 30))-

Indeed, in this case one hais = {0}, ;- = Z,, andG; = G;.
Denote

Yx)={yielyY:zilx,y) = GiTZi, Zi € Z;}.

Proposition 3.1 leads immediately to
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PROPOSITION 3.2.For eachi € I’, x € X it holds
. 1 A 71_ -
YI(x) =Argmin {—5 <<Gi) zi(x, i), zi(x, }’i)>
=Y yisdis(6) 1 i € Yix)
seS;

Denotey; the minimal eigenvalue of the operater(G;)~. Due to (3.3) we
havey; > 0.

PROPOSITION 3.3.1f, foreachi € I', x € X, y; € ¥,

i+ Hix — Z vispis | € R+

SES,‘
then
@i (x, yi)
N1
= _%<<Gi) £i+Hix_Zyispis ,£i+Hi-x_Zyispis>
seS; ses;
- Z Yisqis (X)
seS;
Z & max{yz,} — 1n; Max|yisl,
SES[ 18 SES[

with

E,’ = %)/il(iz, ni = )/,'MiKi + Z maX{|£is|’ |'l_)15|} andK,' from (28)
seS;
Proof. From the inequality

(—(G) ™%, 20) = villzill® Vi e i
it follows that

%<_(Gi)_l ¢ + Hix — Zyispis i+ Hix — Zyispis>

seS; sES;

> il + Hix = yiepisll?

seS;

> 3vi | =206+ Hox | 1) vispisll + 1) yis pis®

seS; ses;
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In view of Assumption D, and (2.4), (2.5) and (2.8), we obtain that

i (X, y) =T (6, 3i) = Y Yisdlis (%)

seS;

> (zyixf) max{yl } = viMix; max{|yi |}

se

= | 2_ max{lu, . 1951} max{lyi|}

SES[

_ 2
=& max{y{} —m max{|yi} O

THEOREM 3.1. The following statements are true:
() If x € Q; (with x from Assumption C), then

Yo(x) C Po(No),
with
-1 2 ~ - 1/2
No = (280) (770 + [§ + 4o max{co(X) + mo(X) — uy, O} ] ) ;
(i) if x € Q, then for each € I it holds
Y (x) C Pi(Ny),
with

N; = (287t <77i + [7712 + 4&; max{—u;, 0}]1/2> :

Proof. (i) If x € Oz andyg € Y§(x), then from Assumption D and Proposition
3.3 we obtain

co(X) +mo(x) = co(x) + mo(x) = co(x) + @o(x, yo)
2
> ug + Somax{yp, | — nomax{lyal}

gomax|y2 | — nomax{|yo|} < co(¥) + mo(X) — uy.
s€So s€So
Hence,
max{|yos|} = max{max{yos} ) maX{IyoSl}}
s€Soy s€So1 SES02

< No=(2&) L <n0+[n3+4€o max{co(¥) +mo(%) —ug, 0}]" 2) .
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(i) If x € Q, then from Assumption D and Proposition 3.3, one can conclude for
eachi € I, y; € Y/ (x) that

> i) +mi(x) = () + i, yi) >, + & max{yl} —mmax{]yisl},
and this leads to
max{|y;s|} = maX{maX{yis} , max{lyml}}
SES; SES; SES;

= @) (ms + [ + 46 max{—u,, 0}]"%). o

4. The reduced problem and a branch-and-bound approach

DenoteV; = R¥ I the Euclidean space of the vectats= {v;,},cs. (i € I') and
letY, V be the product (w.r.t. € I') spaces off; andV;, respectively.

THEOREM 4.1. Let the Assumptions A-D be fulfilled. Then Problem (1.1)—(1.4)
is equivalent to the following reduced problem in the spéce Y x Z x V:

A\ -1
co(x) — 3 <(Go) o+ Hox — Z YosPos | » €o+ Hox — Z y05p05>

s€Sp s€So
+ (yo, vo) — Min (4.2)
S.t.
xe€X, yi€ P(N), zi€Z;, vielv,v] Gel, (4.2)
fi-i-HiX—Z)’isPis—GiTZi =0 (@el), (4.3)
seS;

-1
¢i(x)— 3 <<Gi) ¢+ Hix — Zyispis i + Hix — Zyispis>

SES,‘ SES[

+()’1’Uz><0 (lEI)’ (44)

—qis(x) Svs G el'ys €8n), —qsx)=v, (Gel seSy), (4.5)

with the constantsV;, given in Theorem 3.1, and = {v;,} . 9 = {Uis)cs, are
the minorants and majorants for the optimal values of the Problems (2.11), (2.12),
respectively.
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Proof. Under the assumptions made we have for gaehl’, x € X that

m;(x)=min {Wi(X,)’i) : yie%}=min ﬂi(X,)’i)—Z)’is%‘s(X) (Vi €Y

SES,‘

Therefore, Problem (1.1)—(1.4) is equivalent to the minimization problem in the
spaceX x Y:

co(x) + o(x, Yo) — Y Yasqos (x) — min (4.6)
s€So
s.t.
xeX, yieYGel) ) +my) =Y yiqi@) <0G el
seS;
4.7)

Taking into account that, for eache I', x € X, the functionsm;(x, y;) —
ZSE&_ Yisqis (x) attains its mimimum w.r.ty; € Y; on the sety(x), from Theorem
3.1 it follows that we do not lose any point of the optimal set of Problem (4.6)—
(4.7), due to the inclusiofy* C P;(N;).

Therefore, using (3.3) and the Propositions 3.1, 3.2, Problem (4.6), (4.7) is
equivalent to the following problem i x Y x Z :

-1
co(x) — 5 <(G0) lo+ Hox — Z Yos Pos | » Lo+ Hox — Z y05p05>

s€Sp s€So

+Zy05 —qo,(x)] — min

s€So

S.t.
xeX, e PNy, zieZ, (iel),

E +HX_Zstst—G' ; =0 (lEI)

SES;

-1
ci(x)— 3 <<Gi> ¢+ Hix — Zyispis i + Hix — Zyispis>

SES,‘ SES[

+ Y Vi [~as(0] <0 G e,

seS;
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Inserting in this problem the additional variablese [v;,, ;] (i € 1) and the
additional constraints (4.5), then we obtain Problem (4.1)—(4.5). |

Let u* be the optimal value of the reduced Problem (4.1)—(4.5). Due to Theorem
(4.1), this value is equal to the optimal value of Problem (1.1)—(1.4). Moreover,
if x*, y*, zf, vf (i € I') are the components of the optimal solution of Problem
(4.1)—(4.5), thenr* is the optimal solution of Problem (1.1)—(1.4).

Suppose that, for fixed > 0, the vectof{x, y, z, v} € X x Y x Z x V satisfies
the constraints (4.2), (4.3), (4.5). Then this vector is calledproximate global
minimum(of exactness) of Problem (4.1)—(4.5), if

¢i(x) +mi(x, y) + Zyisvis <e@el)

SES,‘

and

co(x) + mo(x, yo) + Z YosVos < U* + €.

s€So

Now, we describe how an approximate global solution of Problem (4.1)—(4.5) can
be found by means of a branch-and-bound technique.

Letg € X x Y x Z x V be the feasible set of Problem (4.1)—(4.5). Observe
that the constraints (4.2), (4.3) and (4.5) are convex. In the objective function only
the last term(yg, vg) iS honconvex orPy(Ng) x [go, 170]. Analogously, in the con-
straints (4.4) only the last terty;, v;) is nonconvex on the set(N;) x [v;, v;].
However, it is possible to construct convex hulls for the functionsv;) on the
parallelepipedsP; (N;) x [yiﬁ,»] for eachi € I'. This permits us to find on the set
g convex minorants for the functiors(x) + 7; (x, y;) + (y;, vi) (i € I').

Recall that aconvex hull of a nonconvex function f on the convexisat the
Euclidean spac# is the largest convex functioyi of all convex functions orid
for which f(u) > f(u) Yu € U (cf. Rockafellar, 1970; Horst and Tuy, 1996). We
denote this convex hull byoy, f.

From this definition it follows immediately that, i is the product (w.r.ts € S
(S-finite)) of the Euclidean spacéd; and the setl is the product of the convex
setsU, and

@) =" filug) Yu={uses € U,
seS
then
coy fu) =Y coy, filus) Yu={u)ses € U. (4.8)
seS

Now, let us return to our problem. For eache I’ we denote by®; the paral-
lelepiped P;(N;) x [v;, ;] in the spaceY; x V;. Then®; is the product w.r.t.
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s € §; of the rectangles
2. - 2
Pis = {{yis’ vis} € R DY S Vis SN v Svig < Uis} C R,

wherey. =0fors € S;;andy. = —N; fors € S;».

It is well known that the convex hull of a function of two variablgg;, t,) :=
11> on an arbitrary rectangle iR? is a piecewise linear function consisting of two
linear parts (see, for instance, Horst and Tuy, 1996). The corresponding two planes
can be easily constructed by means of the values of the fungtiens ¢, in the
vertices of the rectangle. Indeeduff = {r}, 15} (k = 1, 2, 3, 4) are the vertices of
the rectangle and

fh) < f@?) < f@d) < f@h), with fat) < fu®),
then the first plane i&&® crosses the points:*, f ()}, {u?, fW?}, {ud, fu®]},
and the second one is defined by the po{afs f(u?)}, {u3, f®}, {u* Fu}.
Due to

(yi,vi) = Zyisvis’ P = 1_[ Pis,

SES; SES;

and (4.8), we obtain

Cop, <yi’ Ui) = Z COp; (yisvis)‘

SES[

In view of

(i, vi) = cop (yi,vi) Vi{yi,vi}eP (el),
the function

ci(x) + mi(x, yi) + cop {yi, vi)

is a convex minorant far; (x) +; (x, y;) + (yi, v;) on the convex seX x P;(N;) x

V;, Vi |-

[ Th(]a simplicity of the construction of such convex minorants permits us to use
the branch-and-bound method (cf. Horst and Tuy, 1996; Levitin and Khranovich,
1996) for solving Problem (4.1)—(4.5). This method reduces the problem of finding
an approximate global solution of Problem (4.1)-(4.5) to the solution of a finite
number of convex estimating problems. In this way, in tile step, one has to
solve

co(x) + o(x, Yo) + Y €Oy, (Yosvos) — MiN

s€So

S.t.

xe€§,z€ZiGel), {ys. vis} € Pisk) i €l',s €S)), (4.9
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vi € [v;,9;]G €I, constraintg4.3), (4.5, and

ci(x) +mi(x,y)+ ZCOJP,-S(k)(yisvis) <0G el).

seS;

Here, P;(k) is some rectangle, obtained in theh step by partition of the rec-
tangle #;;. Of course, the efficiency of this approach depends on the number of
partitions which must be made in order to get a suitable accuracy for the approx-
imation of the global minimum. As far as we know, there are no results in the
literature for the speed of convergence for branch-and-bound methods. For a more
detailed description of the branch-and-bound method dealing with a wider class
of problems, containing also problems of the form (4.1)—(4.5), we refer to Levitin
and Khranovich (1996). Under some additional assumptions, there is also shown a
result about the finiteness of the number of steps for finding an approximate global
minimum.

Concerning the consideration of relaxed problems, i.e. problems where the
guadratic functions in the lower level problems can be replaced by convex (resp.
concave) functions, we refer to Levitin (1997). But it should be mentioned that in
this case the computation of the bounds for constructing the parallelepipeds in the
embedding procedure is much more complicated, because, as a rule, there does not
exist an explicit formula for the function; (x, y;). Therefore, the main purpose
of the paper is to examine the proof of the possibility to reduce the solution of
the special generalized semi-infinite programming problem (1.6) to the solution of
a finite number of convex programming problems (4.9). Note that, if we suppose
that X is a convex polyhedral set, that the functiatisin (1.3) are equal to zero
for all i € I, and the functiong;(x), —g;s(x) (i € I',s € S;;) are supposed
to be affine, then, all the estimating problems (4.9) are quadratic programming
problems. If, moreover, it is supposed tliag = 0, then all the problems (4.9) are
linear programming problems.
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