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Abstract. A nonconvex generalized semi-infinite programming problem is considered, involving
parametric max-functions in both the objective and the constraints. For a fixed vector of parameters,
the values of these parametric max-functions are given as optimal values of convex quadratic pro-
gramming problems. Assuming that for each parameter the parametric quadratic problems satisfy the
strong duality relation, conditions are described ensuring the uniform boundedness of the optimal
sets of the dual problems w.r.t. the parameter. Finally a branch-and-bound approach is suggested
transforming the problem of finding an approximate global minimum of the original nonconvex
optimization problem into the solution of a finite number of convex problems.
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1. Introduction

For an introduction to semi-infite programming problems we refer to the exten-
sive survey in Hettich and Kortanek (1993). Concerning the so calledgeneralized
semi-infinite programming(GSIP), that is a problem where the index set of the con-
straints depends on the decision variables of the problem, in the recent past there
has been a growing number of papers. In particular, we refer to Hettich et al. (1995),
Weber (1996), and Jongen et al. (1998) for the generic structure of the solution set
of GSIP and to Hettich and Still (1995) and Kaplan and Tichatschke (1996) for
optimality conditions and special properties of GSIP. In Levitin and Tichatschke
(1998) a smooting procedure for generalized max-functions is developed, which
can be used in the framework of GSIP to work with the differential calculus for
these non-smooth functions.

However, there are only a few papers dealing with some basic ideas for nu-
merical methods for GSIP (see Graettinger and Krogh, 1988; Hettich and Still,
1991; Kaplan and Tichatschke, 1997). In the latter paper a special class of ill-posed
GSIP, arising in robotics or time minimal control problems, is treated by means of
a proximal point technique.
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300 E. LEVITIN AND R. TICHATSCHKE

Here the following optimization problem is considered:

c0(x)+m0(x)→ min, x ∈ Q, (1.1)

with

Q = {x ∈X : ci(x)+mi(x) 6 0 (i ∈ I )} , (1.2)

and, fori ∈ I ′ := {0} ∪ I,
mi(x) := max

{
1
2〈Gizi, zi〉 + 〈`i +Hix, zi〉 : zi ∈ Di(x)

}
, (1.3)

Di(x) := {zi ∈ Zi : 〈pis, zi〉 + qis(x) 6 0 (s ∈ Si1),
〈pis, zi〉 + qis(x) = 0 (s ∈ Si2)} . (1.4)

In this description we suppose:
X is a convex closed set in the Euclidean spaceX;

I is a finite set of indices;

for eachi ∈ I ′ the functionsci are continuous inX and convex onX;

Gi : Zi → Zi are symmetric, negative semi-definite linear operators in the

Euclidean spacesZi;
` ∈ Zi andpis ∈ Zi (s ∈ Si := Si1 ∪ Si2) are vectors;

Hi : X → Zi are arbitrary linear operators;

Si1 andSi2 are finite sets of indices;

the functions−qis (s ∈ Si1) are convex onX and continuous onX, and

qis (s ∈ Si2) are affine onX.
First, we assume that for eachx ∈ X the setDi(x) 6= ∅ for arbitraryi ∈ I ′. Below,
some conditions are given ensuring this property. Obviously, if in Problem (1.1),
(1.2)Q 6= ∅ and there exists a pointx ∈ Q for which c0(x)+m0(x) < +∞, then
mi(x) < +∞ ∀ i ∈ I ′.

In system analysis, in particular, in mathematical economics (Germeyer, 1976)
and robotics (Graettinger and Krogh, 1988), often optimization models are consid-
ered with entries, depending on a vector of parameterszi (i ∈ I ′). For example, an
objective functionJ and functionsfi, describing inequality constraints, may have
the form

J(x) := c0(x)+ h0(x, z0), fi(x) := ci(x)+ hi(x, zi) (i ∈ I ).
Each of the parameterszi belongs to a corresponding setDi, which may depend on
the sought solutionx of the initial problem, i.e.Di = Di(x), whereDi(x) is, for
instance, given as in (1.4).

Usually it is unknown which vectorzi ∈ Di(x) has to be chosen, i.e., we deal
with an optimization model under uncertainty. If there is no information about
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such a possible choice, it is natural to use the ‘principle of guaranteed results’ (cf.
Germeyer, 1976a, b) or other conservative strategies (cf. Tichatschke et al., 1989),
ensuring the validity of the model also in the worst situation. That means a solution
x ∈ X is sought which satisfies the inequalityci(x) + hi(x, zi) 6 0 (i ∈ I )
for arbitrary zi ∈ Di(x) and minimizes the objective function under the worst
z0 ∈ D0(x). In this case we obtain the following problem:

c0(x)+max{h0(x, z0) : z0 ∈ D0(x)} → min

s.t. ci(x)+max{hi(x, zi) : zi ∈ Di(x)} 6 0 (i ∈ I ), x ∈X.

This problem is equivalent to Problem (1.1), (1.2) if we suppose that for alli ∈ I ′
the functionshi are of the form

hi(x, zi) := 1
2〈Gizi, zi〉 + 〈`i +Hix, zi〉,

where the setsDi(x) are given via (1.4).
In this framework, for eachi ∈ I ′, a family of parametric, convex, quadratic

programming problems (PQP) with parameterx ∈ X can be considered:

1
2〈Gizi, zi〉 + 〈`i +Hix, zi〉 → max, zi ∈ Di(x). (1.5)

We call the functionmi(x), giving via (1.3) for fixedx ∈ X the optimal value of
Problem (1.5),generalized max-function of type PQP. From the theory of convex
programming it follows that, in caseDi(x) 6= ∅ andmi(x) > −∞, the duality
relation is always true. In general, due to the dependence ofDi on x, the optimal
value functionmi(x) of (1.5) is nonconvex. Hence, (1.1)-(1.4) is a nonconvex op-
timization problem and we call itgeneralized semi-infinite programming problem
of the type PQP, because it can be rewritten as a problem in the spaceX × R1:

v→ min

x ∈X, v ∈ R1,

c0(x)+ 1
2〈G0z0, z0〉 + 〈`0+H0x, z0〉 − v 6 0 ∀z0 ∈ D0(x), (1.6)

ci(x)+ 1
2〈Gizi, zi〉 + 〈`i +Hix, zi〉 6 0 ∀zi ∈ Di(x) (i ∈ I ).

The main idea of the paper is that under suitable assumptions, and by using the dual
problems of the arising quadratic subproblems (1.5), a reduced nonconvex problem
with a finite number of variables and constraints can be obtained (cf. (4.1)–(4.5)).
In the latter problem, the convex envelopes of the nonconvex functions in the ob-
jective and constraints can be easily computed. A branch-and-bound approach is
proposed for solving the latter problem. As a consequence, an approximate solution
of the original problem can be obtained by solving finitely many convex problems.

We do not strive to describe in detail the resulting branch-and-bound algorithm
for the transformed problems, because it does not lead to fundamental new theoreti-
cal or practical contributions. Rather, the basic message in this paper consists in the
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connection between some special generalized semi-infinite programming problems
and the possibility of their reduction to a sequence of convex finite dimensional
problems. To what extent this approach works efficiently in practice, is still an
open question and needs computational experiences.

In Section 2 basic properties of Problem (1.5) and assumptions are given under
which Problem (1.1)–(1.4) is investigated. An explicit form of the dual function for
Problem (1.5) is described in Section 3 and some constants are calculated, ensuring
that for all i ∈ I ′ andx ∈ Q the optimal sets of the dual problems to Problem
(1.5) are contained in certain parallelepipeds. In Section 4 the equivalence between
Problem (1.1)–(1.4) and a reduced problem (4.1)–(4.5) is proved. Finally, a branch-
and-bound technique is sketched briefly to find an approximate solution of Problem
(4.1)–(4.5) by means of the solutions of a finite number of convex problems (see
(4.9)).

2. Basic notations and assumptions

Let yi = {yis}s∈Si ∈ Yi = R|Si | be the Lagrange multiplier vector for Problem (1.5)
and

Yi = R|Si1 |+ × R|Si2 | . (2.1)

Denote

5i(x, zi, yi) := 1
2〈Gizi, zi〉 +

〈
`i +Hix −

∑
s∈Si

yispis, zi

〉
−
∑
s∈Si

yisqis(x),

(2.2)

ϕi(x, yi) := sup{5i(x, zi, yi) : zi ∈ Zi}, (2.3)

the Lagrange function and dual function for Problem (1.5), respectively. It is obvi-
ous that

ϕi(x, yi) := πi(x, yi)−
∑
s∈Si

yisqis (x), (2.4)

with

πi(x, yi) := sup

1
2〈Gizi, zi〉 + 〈`i +Hix −

∑
s∈Si

yispis, zi〉 : zi ∈ Zi

 .
(2.5)

The functionπi(x, y) is convex w.r.t. the pair{x, yi}, because it is the supremum
w.r.t. zi ∈ Zi of a parametric affine function in{x, yi}. From (2.4) it follows that
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for eachi ∈ I ′ the dual to Problem (1.5) has the form

πi(x, yi)−
∑
s∈Si

yisqis(x)→ min, yi ∈ Yi . (2.6)

Let

Y∗i (x) := Argmin
πi(x, yi)−∑

s∈Si
yisqis(x) : yi ∈ Yi

 (2.7)

be the optimal set of Problem (2.6).
Neglecting the fact that it was necessary to describe some of the assumptions in

the introduction in order to understand Problem (1.1)–(1.4), we formulate now the
complete set of assumptions used in this investigation.

ASSUMPTION A.X is a convex set inX; for eachi ∈ I ′ the continuous functions
ci and−qis are convex onX for s ∈ Si1 andqis is affine inX for s ∈ Si2.
ASSUMPTION B. For eachi ∈ I ′ there exist numbersθi > 0, ζi > 0 and a vector
z̃i ∈ Zi such that

(i) for everyy(2)i = {yis, s ∈ Si2} ∈ R|Si2 | the linear system

〈pis, ξi〉 = yis ∀s ∈ Si2
has a solutionξi = ξi(y(2)i ) with ‖ξi‖ 6 θimaxs∈Si2|yis | (it is obvious that
this condition is equivalent to the linear independence of the vectorspis, s ∈
Si2);

(ii) 〈pis, z̃i〉 6 ζi < 0 ∀s ∈ Si1, 〈pis, z̃i〉 = 0 ∀s ∈ Si2.
From the convex analysis it is well known (see, for instance, Rockafellar, 1970)
that under Assumption B the setDi(x) is nonempty for arbitraryi ∈ I ′ andx ∈X.

PROPOSITION 2.1.Suppose that Assumption B is fulfilled, then for eachi ∈ I ′
it holds∥∥∥∥∥∥

∑
s∈Si

yispis

∥∥∥∥∥∥ > κi max
s∈Si
|yis | ∀yi ∈ Yi , (2.8)

with κ = ζi
[
ζiθi + ‖z̃i‖(1+ θimaxs∈Si1‖pis‖)

]−1
.

Proof.Let yi = {y(1)i , y(2)i }, with y(1)i = {yis, s ∈ Si1} > 0, y(2)i = {yis, s ∈ Si2}
andmaxs∈Si |yis | = 1. Due to Assumption B(i) there exists a vectorξi = ξi(y(2)i )
such that

〈pis, ξi〉 = sign yis ∀s ∈ Si2, ‖ξi‖ 6 θimaxs∈Si2|yis | 6 θi.

jogo420.tex; 17/09/1998; 8:47; p.5



304 E. LEVITIN AND R. TICHATSCHKE

Denote

γi = θi
[
1+ θimaxs∈Si1‖pis‖

]−1
,

z̄i(yi) = (γiξi(y(2)i )− z̃i)‖γiξi(y(2)i )− z̃i‖−1.

Due to

‖z̄i(yi)‖ = 1, γi = ζi − γiθimaxs∈Si1‖pis‖,
and

∑
s∈Si
|yis | > maxs∈Si |yis | = 1,

we obtain

‖
∑
s∈Si

yispis‖ >
〈∑
s∈Si

yispis, z̄i (yi)

〉

= ‖γiξi(y(2)i )− z̃i‖−1

∑
s∈Si1

yis

〈
pis, γiξi(y

(2)
i )
〉

+
∑
s∈Si1

yis〈pis,−z̃i〉 +
∑
s∈Si2

yisγisign yis


> (γiθi + ‖z̃i‖)−1

(ζi − γiθimaxs∈Si1‖pis‖)∑
s∈Si1

yis + γi
∑
s∈Si2
|yis |


= (γiθi + ‖z̃i‖)−1γi

∑
s∈Si
|yis | > (γiθi + ‖z̃i‖)−1γi.

Hence, ifmaxs∈Si |yis | = 1, then‖∑s∈Si yispis‖ > (γiθi + ‖z̃i‖)−1 ≡ κi. 2

ASSUMPTION C. There exists a vectorx̃ ∈X such that

m0(x̃) < +∞, ci(x̃)+mi(x̃) 6 0 ∀i ∈ I
and the set

Qx̃ := {x ∈ Q : c0(x)+m0(x) 6 c0(x̃)+m0(x̃)}
is bounded.

Condition C guarantees that the set{x ∈ Q : c0(x) + m0(x) < +∞} is non-
empty, that the optimal value of Problem (1.1)–(1.4) is finite, and that the optimal
solution of Problem (1.1)–(1.4) belongs to the setQx̃ . It is obvious that

mi(x) < +∞ ∀i ∈ I ′,∀x ∈ Qx̃.

jogo420.tex; 17/09/1998; 8:47; p.6



SOLVING A CLASS OF GENERALIZED SEMI- INFINITE PROGRAMMING PROBLEMS 305

From the theory of convex quadratic programming (cf., for instance, Künzi and
Krelle, 1962; Pshenichny, 1980) it holds: If in Problem (1.5)Di(x) 6= ∅ and the
optimal value is finite, then the strong dualtiy relation is valid, i.e.,

mi(x) := sup
zi∈Di(x)

{
1
2〈Gizi, zi〉 + 〈`i +Hix, zi〉

} = inf
yi∈Yi

ϕi(x, yi). (2.9)

Moreover, the optimal setsZ∗i (x) andY∗i (x) of the Problems (1.5) and (2.6) are
nonempty, respectively. Therefore, from the Assumptions B and C it follows that
for eachi ∈ I ′ andx ∈ Qx̃ the duality relation (2.9) holds, and thatZ∗i (x) 6= ∅
andY∗i (x) 6= ∅.
ASSUMPTION D. For eachi ∈ I ′ there are known numbersui,Mi > 0, vis , and
v̄is (s ∈ Si) such that for arbitraryx ∈X the inequalities

ci(x) > ui,

‖`i +Hix‖ 6 Mi,

vis 6 −qis(x) 6 v̄is (s ∈ Si)
(2.10)

are true.

Assumption D can be replaced by a weaker, but more complicated verificable
one, namely that the inequalities (2.10) are satisfied only for eachx ∈ Qx̃.

Concerning the determination of the constants arising in (2.10) we emphasize:
• Condition ci(x) > ui ∀x ∈ X is always true, if the setX is bounded or
ci(x) → +∞ for x ∈ X, ‖x‖ → ∞; to calculate the numbersui it is
sufficient to find or to underestimate the valuesinf {ci(x) : x ∈ X}.
• Condition ‖`i + Hix‖ 6 Mi ∀x ∈ X holds, if the setX is bounded or
‖Hix‖ > ai‖x‖ ∀x ∈ X (ai > 0), i.e.,{x : Hx = 0} = {0X}; to determine
the numbersMi it is sufficient to find or to overestimatesup{‖`i + Hix‖ :
x ∈ X}. This supremum can be easily calculated if the setX is bounded,
namely

sup{‖`i +Hix‖ : x ∈X} 6 ‖`i‖ + ‖Hi‖supx∈X‖x‖.
Note that, in general, the problemsup{‖`i + Hix‖ : x ∈ X} consists of the
maximization of a convex function on a convex set. This is one of the well
studied problems in global optimization. It is well-known, ifX is a convex
polyhedron, that this maximum is equal to the maximum of the values of the
objective function in the vertices ofX.

• Finally, it should be noted that fors ∈ Si1, the numbersvis are minorants of
the optimal values of the following convex optimization problems

−qis(x)→ min, x ∈ X, (2.11)
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andv̄is are majorants of the optimal values of the problems

−qis(x)→ max, x ∈ X. (2.12)

In the latter problem a convex function on a convex set has to be maximized.
For the solution of this problem we refer to several numerical methods in
Horst and Tuy (1996).

Analogously, fors ∈ Si2, the numbersvis andv̄is are minorants and ma-
jorants, respectively, of the optimal values of the convex Problems (2.11) and
(2.12) (observe that fors ∈ Si2 the functionsqis are supposed to be affine).
If X is a convex polyhedron, then obviously we deal in (2.12) with linear
programming problems.

3. Uniform embedding of the optimal setsY∗i (x) into polyhedrons

For givenNi > 0 (i ∈ I ′) we consider the following polyhedrons

Pi(Ni) := {yi ∈ Yi : 06 yis 6 Ni (s ∈ Si1), |yis | 6 Ni (s ∈ Si2)} . (3.1)

In the sequel we describe a procedure determining the constantsNi in (3.1) such
that

Y∗i (x) ⊂ Pi(Ni) ∀i ∈ I ′, ∀x ∈ Qx̃.

Let<i = {zi ∈ Zi : Gizi = 0} be the kernel of the operatorGi,<⊥i be the orthog-
onal complement to the subspace<i, then

<⊥i =
{
z′i ∈ Zi : z′i = GT

i zi for somezi ∈ Zi
}
, (3.2)

with GT
i the conjugate operator toGi . DenoteĜi the restriction of the operatorGi

on the subspace<⊥i . Then we obtain:

if zi ∈ Zi , zi = ži + ẑi, with ži ∈ <i , ẑi ∈ <⊥i ⇒ Ĝi ẑi = Gizi.

In this way we deal with a non-degenerate operatorĜi , i.e. there exists the inverse
(Ĝi)

−1. Taking into account thatGi is assumed to be negative semi-definite, the
operatorsĜi and(Ĝi)

−1 are negative definite, i.e., for someλi > 0 it holds

〈Ĝi ẑi, ẑi〉 6 −λi‖ẑi‖2 ∀ẑi ∈ <⊥i . (3.3)

Now, we come back to our problem. For eachi ∈ I ′, x ∈ X, yi ∈ Yi denote

z̄i(x, yi) = `i +Hix −
∑
s∈Si

yispis . (3.4)

Obviously,z̄i is an affine operator fromX × Yi into Zi .

jogo420.tex; 17/09/1998; 8:47; p.8



SOLVING A CLASS OF GENERALIZED SEMI- INFINITE PROGRAMMING PROBLEMS 307

PROPOSITION 3.1. For each i ∈ I ′, x ∈ X, yi ∈ Yi the functionπi(x, yi),
defined by (2.5), is equal to

πi(x, yi) =
 −1

2

〈(
Ĝi

)−1
z̄i(x, yi), z̄i(x, yi)

〉
if z̄i(x, yi) ∈ <⊥i ,

+∞ otherwise.

Proof. Let z̄i(x, yi) 6∈ <⊥i , i.e. ∃zi ∈ <i , zi 6= 0 such that〈z̄i(x, yi), zi〉 6=
0. Without loss of generality let〈z̄i(x, yi), zi〉 > 0, otherwise−zi ∈ <i can be
chosen. Due to〈Gizi, zi〉 = 0 the function

1
2〈Gi(tzi), tzi〉 + 〈z̄i(x, yi), tzi〉 = t〈z̄i(x, yi), zi〉 → +∞ for t →+∞.

Hence,πi(x, yi) = +∞.
Now, let z̄i(x, yi) ∈ <⊥i . For arbitraryzi ∈ Zi denoteẑi the orthogonal projec-

tion of zi on the subspace<⊥i . Then we get

〈Gizi, zi〉 = 〈Ĝi ẑi, ẑi〉 and 〈z̄i (x, yi), zi〉 = 〈z̄i(x, yi), ẑi〉
because ofzi − ẑi ∈ <i .

Hence, ifz̄i(x, yi) ∈ <⊥i , one can conclude that

sup
zi∈Zi

{
1
2〈Gizi, zi〉 + 〈z̄i (x, yi), zi〉

} = sup
ẑi∈<⊥i

{
1
2〈Ĝi ẑi, ẑi〉 + 〈z̄i (x, yi), ẑi〉

}
= −1

2

〈(
Ĝi

)−1
z̄i(x, yi), z̄i(x, yi)

〉
,

because the function12〈Ĝi ẑi, ẑi〉+〈z̄(x, yi), ẑi〉 attains its maximum w.r.t.̂zi ∈ <⊥i
in the point

ẑi = −
(
Ĝi

)−1
z̄i(x, yi). (3.5)

2

COROLLARY 3.1. Assume that the matrixGi is negative definite. Then

πi(x, yi) = −1
2〈G−1

i z̄i(x, yi), z̄i(x, yi)〉.

Indeed, in this case one has<i = {0},<⊥i = Zi, andĜi = Gi.

Denote

Yi(x) = {yi ∈ Y : z̄i(x, yi) = GT
i zi, zi ∈ Zi}.

Proposition 3.1 leads immediately to
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308 E. LEVITIN AND R. TICHATSCHKE

PROPOSITION 3.2.For eachi ∈ I ′, x ∈X it holds

Y∗i (x) =Argmin
{
−1

2

〈(
Ĝi

)−1
z̄i(x, yi), z̄i(x, yi)

〉

−
∑
s∈Si

yisqis (x) : yi ∈ Yi(x)

 .
Denoteγi the minimal eigenvalue of the operator−(Ĝi)

−1. Due to (3.3) we
haveγi > 0.

PROPOSITION 3.3.If, for eachi ∈ I ′, x ∈ X, yi ∈ Yi,`i +Hix −∑
s∈Si

yispis

 ∈ <⊥i
then

ϕi(x, yi)

= −1
2

〈(
Ĝi

)−1

`i +Hix −∑
s∈Si

yispis

 , `i +Hix −∑
s∈Si

yispis

〉
−
∑
s∈Si

yisqis(x)

> ξi max
s∈Si

{
y2
is

}− ηi max
s∈Si
|yis |,

with

ξi = 1
2γiκ

2
i , ηi = γiMiκi +

∑
s∈Si

max
{|vis |, |v̄is |} andκi from (2.8).

Proof.From the inequality

〈−(Ĝi)
−1ẑi, ẑi〉 > γi‖ẑi‖2 ∀ẑi ∈ <⊥i

it follows that

1
2

〈
−(Ĝi)

−1

`i +Hix −∑
s∈Si

yispis

 , `i +Hix −∑
s∈Si

yispis

〉
> 1

2γi‖`i +Hix −
∑
s∈Si

yispis‖2

>
1
2γi

−2‖`i +Hix‖ ‖
∑
s∈Si

yispis‖ + ‖
∑
s∈Si

yispis‖2
 .
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In view of Assumption D, and (2.4), (2.5) and (2.8), we obtain that

ϕi(x, y) =πi(x, yi)−
∑
s∈Si

yisqis(x)

>
(

1
2γiκ

2
i

)
max
s∈Si

{
y2
is

}− γiMiκi max
s∈Si
{|yis |}

−
∑
s∈Si

max
{|vis|, |v̄is |}

max
s∈Si
{|yis |}

=ξi max
s∈Si

{
y2
is

}− ηi max
s∈Si
{|yis |} . 2

THEOREM 3.1. The following statements are true:
(i) If x ∈ Qx̃ (with x̃ from Assumption C), then

Y∗0(x) ⊂ P0(N0),

with

N0 = (2ξ0)
−1
(
η0+

[
η2

0 + 4ξ0 max
{
c0(x̃)+m0(x̃)− u0,0

}]1/2) ;
(ii) if x ∈ Q, then for eachi ∈ I it holds

Y∗i (x) ⊂ Pi(Ni),
with

Ni = (2ξi)−1
(
ηi +

[
η2
i + 4ξi max

{−ui,0}]1/2) .
Proof. (i) If x ∈ Qx̃ andy0 ∈ Y∗0(x), then from Assumption D and Proposition

3.3 we obtain

c0(x̃)+m0(x̃) > c0(x)+m0(x) = c0(x)+ ϕ0(x, y0)

> u0+ ξ0 max
s∈S0

{
y2

0s

}− η0 max
s∈S0

{|y0s|} ,

i.e.

ξ0 max
s∈S0

{
y2

0s

}− η0 max
s∈S0

{|y0s |} 6 c0(x̃)+m0(x̃)− u0.

Hence,

max
s∈S0

{|y0s |} = max
{

max
s∈S01

{y0s} ,max
s∈S02

{|y0s|}
}

6 N0=(2ξ0)
−1
(
η0+

[
η2

0+4ξ0 max
{
c0(x̃)+m0(x̃)−u0,0

}]1/2)
.
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(ii) If x ∈ Q, then from Assumption D and Proposition 3.3, one can conclude for
eachi ∈ I, yi ∈ Y∗i (x) that

0> ci(x)+mi(x) = ci(x)+ ϕi(x, yi) > ui + ξi max
s∈Si

{
y2
is

}− ηi max
s∈Si
{|yis |} ,

and this leads to

max
s∈Si
{|yis |} = max

{
max
s∈Si1
{yis} ,max

s∈Si2
{|yis |}

}
6 Ni = (2ξi)−1

(
ηi +

[
η2
i + 4ξi max

{−ui,0}]1/2) . 2

4. The reduced problem and a branch-and-bound approach

DenoteVi = R
|Si | the Euclidean space of the vectorsvi = {vis}s∈Si (i ∈ I ′) and

let Y,V be the product (w.r.t.i ∈ I ′) spaces ofYi andVi, respectively.

THEOREM 4.1. Let the Assumptions A–D be fulfilled. Then Problem (1.1)–(1.4)
is equivalent to the following reduced problem in the spaceX × Y × Z × V:

c0(x)− 1
2

〈(
Ĝ0

)−1

`0+H0x −
∑
s∈S0

y0sp0s

 , `0+H0x −
∑
s∈S0

y0sp0s

〉
+ 〈y0, v0〉 → min (4.1)

s.t.

x ∈X, yi ∈ Pi(Ni), zi ∈ Zi , vi ∈
[
vi, v̄i

]
(i ∈ I ′), (4.2)

`i +Hix −
∑
s∈Si

yispis −GT
i zi = 0 (i ∈ I ′), (4.3)

ci(x)− 1
2

〈(
Ĝi

)−1

`i +Hix −∑
s∈Si

yispis

 , `i +Hix −∑
s∈Si

yispis

〉
+ (yi, vi〉 6 0 (i ∈ I ), (4.4)

−qis(x) 6 vis (i ∈ I ′, s ∈ Si1), −qis(x) = vis (i ∈ I ′, s ∈ Si2), (4.5)

with the constantsNi , given in Theorem 3.1, andvi =
{
vis
}
s∈Si , v̄i = {v̄is}s∈Si are

the minorants and majorants for the optimal values of the Problems (2.11), (2.12),
respectively.
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Proof.Under the assumptions made we have for eachi ∈ I ′, x ∈ X that

mi(x)=min
{
ϕi(x, yi) : yi ∈Yi

}=min

πi(x, yi)−∑
s∈Si

yisqis(x) : yi ∈ Y

 .
Therefore, Problem (1.1)–(1.4) is equivalent to the minimization problem in the
spaceX × Y:

c0(x)+ π0(x, y0)−
∑
s∈S0

y0sq0s(x)→ min (4.6)

s.t.

x ∈X, yi ∈ Yi (i ∈ I ′), ci(x)+ πi(x, yi)−
∑
s∈Si

yisqis(x) 6 0 (i ∈ I ).

(4.7)

Taking into account that, for eachi ∈ I ′, x ∈ X, the functionπi(x, yi) −∑
s∈Si yisqis(x) attains its mimimum w.r.t.yi ∈ Yi on the setY∗i (x), from Theorem

3.1 it follows that we do not lose any point of the optimal set of Problem (4.6)–
(4.7), due to the inclusionY∗i ⊂ Pi(Ni).

Therefore, using (3.3) and the Propositions 3.1, 3.2, Problem (4.6), (4.7) is
equivalent to the following problem inX × Y × Z :

c0(x)− 1
2

〈(
Ĝ0

)−1

`0+H0x −
∑
s∈S0

y0sp0s

 , `0+H0x −
∑
s∈S0

y0sp0s

〉

+
∑
s∈S0

y0s
[−q0s(x)

]→ min

s.t.

x ∈X, yi ∈ Pi(Ni), zi ∈ Zi (i ∈ I ′),

`i +Hix −
∑
s∈Si

yispis −GT
i zi = 0 (i ∈ I ′),

ci(x)− 1
2

〈(
Ĝi

)−1

`i +Hix −∑
s∈Si

yispis

 , `i +Hix −∑
s∈Si

yispis

〉

+
∑
s∈Si

yis
[−qis(x)] 6 0 (i ∈ I ).
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Inserting in this problem the additional variablesvi ∈
[
vi, , v̄i

]
(i ∈ I ′) and the

additional constraints (4.5), then we obtain Problem (4.1)–(4.5). 2

Letµ∗ be the optimal value of the reduced Problem (4.1)–(4.5). Due to Theorem
(4.1), this value is equal to the optimal value of Problem (1.1)–(1.4). Moreover,
if x∗, y∗i , z

∗
i , v
∗
i (i ∈ I ′) are the components of the optimal solution of Problem

(4.1)–(4.5), thenx∗ is the optimal solution of Problem (1.1)–(1.4).
Suppose that, for fixedε > 0, the vector{x, y, z, v} ∈ X × Y × Z × V satisfies

the constraints (4.2), (4.3), (4.5). Then this vector is called anapproximate global
minimum(of exactnessε) of Problem (4.1)–(4.5), if

ci(x)+ πi(x, yi)+
∑
s∈Si

yisvis 6 ε (i ∈ I )

and

c0(x)+ π0(x, y0)+
∑
s∈S0

y0sv0s 6 µ
∗ + ε.

Now, we describe how an approximate global solution of Problem (4.1)–(4.5) can
be found by means of a branch-and-bound technique.

Let G ⊂ X × Y × Z × V be the feasible set of Problem (4.1)–(4.5). Observe
that the constraints (4.2), (4.3) and (4.5) are convex. In the objective function only
the last term〈y0, v0〉 is nonconvex onP0(N0)×

[
v0, v̄0

]
. Analogously, in the con-

straints (4.4) only the last term〈yi, vi〉 is nonconvex on the setPi(Ni) ×
[
vi, v̄i

]
.

However, it is possible to construct convex hulls for the functions〈yi , vi〉 on the
parallelepipedsPi(Ni) ×

[
viv̄i

]
for eachi ∈ I ′. This permits us to find on the set

G convex minorants for the functionsci(x)+ πi(x, yi)+ 〈yi, vi〉 (i ∈ I ′).
Recall that aconvex hull of a nonconvex function f on the convex setU in the

Euclidean spaceU is the largest convex functionf of all convex functions onU
for whichf (u) > f (u) ∀u ∈ U (cf. Rockafellar, 1970; Horst and Tuy, 1996). We
denote this convex hull bycoUf .

From this definition it follows immediately that, ifU is the product (w.r.t.s ∈ S
(S-finite)) of the Euclidean spacesUs and the setU is the product of the convex
setsUs and

f (u) =
∑
s∈S

fs(us) ∀u = {us}s∈S ∈ U,

then

coUf (u) =
∑
s∈S

coUs
fs(us) ∀u = {us}s∈S ∈ U. (4.8)

Now, let us return to our problem. For eachi ∈ I ′ we denote byPi the paral-
lelepipedPi(Ni) ×

[
vi, v̄i

]
in the spaceYi × Vi. ThenPi is the product w.r.t.
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s ∈ Si of the rectangles

Pis =
{
{yis, vis} ∈ R2 : y

is
6 yis 6 Ni, vis 6 vi,s 6 v̄is

}
⊂ R

2,

wherey
is
= 0 for s ∈ Si1 andy

is
= −Ni for s ∈ Si2.

It is well known that the convex hull of a function of two variablesf (t1, t2) :=
t1t2 on an arbitrary rectangle inR2 is a piecewise linear function consisting of two
linear parts (see, for instance, Horst and Tuy, 1996). The corresponding two planes
can be easily constructed by means of the values of the functionf = t1t2 in the
vertices of the rectangle. Indeed, ifuk = {tk1, tk2} (k = 1,2,3,4) are the vertices of
the rectangle and

f (u1) 6 f (u2) 6 f (u3) 6 f (u4), with f (u1) < f (u4),

then the first plane inR3 crosses the points
{
u1, f (u1)

}
,
{
u2, f (u2)

}
,
{
u3, f (u3)

}
,

and the second one is defined by the points
{
u2, f (u2)

}
,
{
u3, f (u3)

}
,
{
u4, f (u4)

}
.

Due to

〈yi, vi〉 =
∑
s∈Si

yisvis, Pi =
∏
s∈Si

Pis,

and (4.8), we obtain

coPi 〈yi, vi〉 =
∑
s∈Si

coPis (yisvis).

In view of

〈yi, vi〉 > coPi 〈yi, vi〉 ∀ {yi, vi} ∈ Pi (i ∈ I ′),
the function

ci(x)+ πi(x, yi)+ coPi 〈yi, vi〉
is a convex minorant forci(x)+πi(x, yi)+〈yi, vi〉 on the convex setX×Pi(Ni)×[
vi, v̄i

]
.

The simplicity of the construction of such convex minorants permits us to use
the branch-and-bound method (cf. Horst and Tuy, 1996; Levitin and Khranovich,
1996) for solving Problem (4.1)–(4.5). This method reduces the problem of finding
an approximate global solution of Problem (4.1)–(4.5) to the solution of a finite
number of convex estimating problems. In this way, in thekth step, one has to
solve

c0(x)+ π0(x, y0)+
∑
s∈S0

coP0s(k)(y0sv0s)→ min

s.t.

x ∈ G, zi ∈ Zi (i ∈ I ′), {yis, vis} ∈ Pis(k) (i ∈ I ′, s ∈ Si), (4.9)
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vi ∈
[
vi, v̄i

]
(i ∈ I ′), constraints(4.3), (4.5), and

ci(x)+ πi(x, yi)+
∑
s∈Si

coPis (k)(yisvis) 6 0 (i ∈ I ).

Here,Pis(k) is some rectangle, obtained in thek-th step by partition of the rec-
tanglePis . Of course, the efficiency of this approach depends on the number of
partitions which must be made in order to get a suitable accuracy for the approx-
imation of the global minimum. As far as we know, there are no results in the
literature for the speed of convergence for branch-and-bound methods. For a more
detailed description of the branch-and-bound method dealing with a wider class
of problems, containing also problems of the form (4.1)–(4.5), we refer to Levitin
and Khranovich (1996). Under some additional assumptions, there is also shown a
result about the finiteness of the number of steps for finding an approximate global
minimum.

Concerning the consideration of relaxed problems, i.e. problems where the
quadratic functions in the lower level problems can be replaced by convex (resp.
concave) functions, we refer to Levitin (1997). But it should be mentioned that in
this case the computation of the bounds for constructing the parallelepipeds in the
embedding procedure is much more complicated, because, as a rule, there does not
exist an explicit formula for the functionπi(x, yi). Therefore, the main purpose
of the paper is to examine the proof of the possibility to reduce the solution of
the special generalized semi-infinite programming problem (1.6) to the solution of
a finite number of convex programming problems (4.9). Note that, if we suppose
thatX is a convex polyhedral set, that the functionsGi in (1.3) are equal to zero
for all i ∈ I , and the functionsci(x),−qis(x) (i ∈ I ′, s ∈ Si1) are supposed
to be affine, then, all the estimating problems (4.9) are quadratic programming
problems. If, moreover, it is supposed thatG0 ≡ 0, then all the problems (4.9) are
linear programming problems.
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